
PHYSICAL REVIEW E 68, 026105 ~2003!
Number fluctuation and the fundamental theorem of arithmetic
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We considerN bosons occupying a discrete set of single-particle quantum states in an isolated trap. Usually,
for a given excitation energy, there are many combinations of exciting different number of particles from the
ground state, resulting in a fluctuation of the ground state population. As a counterexample, we take the
quantum spectrum to be logarithms of the prime number sequence, and using the fundamental theorem of
arithmetic, find that the ground state fluctuation vanishes exactly forall excitations. The use of the canonical
or grand canonical ensembles, on the other hand, gives a substantial number fluctuation for the ground state.
This is an example of a system where canonical and grand canonical ensemble averagings are not valid because
of the peculiar nature of the quantum spectrum.
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After the experimental discovery of Bose-Einstein co
densate in a trapped dilute gas at ultralow temperatu
much attention has been paid to the problem of number fl
tuation in the ground state of the ideal system@1–9#, as well
as a weakly interacting Bose gas@10–17#. There are also a
few papers on ground state fluctuations in a trapped Fe
gas@18#. There are several reasons for this interest. In s
dard statistical mechanics, number fluctuation is related
density-density correlation, and to the compressibility of
system in the grand canonical ensemble@17#. The cross sec-
tion for light scattering off the medium, in principle, may b
related to the ground state fluctuation in the system@19#. The
so called grand canonical catastrophe in an ideal Bose
where the fluctuation diverges at low temperatures, was
ready known@20#. Therefore, a more accurate treatment
the problem was needed for trapped gases. In the micr
nonical treatment of number fluctuation from the grou
state in a harmonic trap, the problem is closely related to
combinatorics of partitioning an integer, and thus there w
an interesting link to number theory@1#. It turned out that the
result for the ground state number fluctuation was very s
sitive to the asymptotic approximations that were made. A
other aspect that drew much attention in the literature w
the difference in the calculated results for fluctuation us
the canonical and the microcanonical formulations@7,8#.

In this paper, we give an example of a quantum spectr
that has no number fluctuation in the ground state for
excitation energy in the microcanonical ensemble, as a di
corollary of the fundamental theorem of arithmetic. The c
nonical ensemble, on the other hand, yields a dramatic
different ground state number fluctuation. This failure sign
the breakdown of the canonical ensemble itself due to
peculiar nature of the single-particle spectrum in our
ample. Generally, when a large excitation energy is supp
to a system, there is a very large number of distinct mic
scopic configurations accessible to it. All these different m
crostates describe the same macrostate of a given excit
energy. The classic example is that of bosons in a harm
trap, where the number of partitions of an integer numb
corresponding to the number of microstates, increases e
nentially. We use, on the other hand, another example f
number theory, to propose a system wherethe excitation en-
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ergy, no matter how large, is locked in one microstate. Con-
sequently, although it is possible to explicitly calculate t
canonical or grand canonical partition functions and the
fore the thermodynamic entropy for this example, it does
approach or equal the information-theoretic entropy that
be exactly calculated using number theory@22#. So far as we
know, this constitutes an important example of a quant
spectrum where the usual statistical concepts fail, no ma
how large the number of particles.

We consider bosons in a hypothetical trap with a sing
particle spectrum~not including the ground state, which is a
zero energy!,

ep5 ln p, ~1!

wherep runs over the prime numbers 2,3,5, . . . . We do not
know how to realize such a spectrum experimentally, an
is merely a means of performing a thought experiment.
shall use, in what follows, both a truncated sequence
primes as well as the infinite sequence when we perform
canonical calculations for fluctuation. First, however, we p
form the exact calculation for number fluctuation from t
ground state. Suppose that there areN bosons in the ground
state at zero energy, and an excitation energyEx is given to
the system. In how many ways can this energy be sha
amongst the bosons by this spectrum? Before giving the
swer, we remind the reader of the fundamental theorem
arithmetic, which states that every positive integern can be
written in only one way as a product of prime numbers@23#:

n5p1
n1p2

n2
•••pr

nr
•••, ~2!

wherepr ’s are distinct prime numbers, andnr ’s are positive
integers including zero, and need not be distinct. It imme
ately follows from Eq.~2! that if the excitation energyEx
5 ln n, where the integern>2, there is only one unique wa
of exciting the particles from the ground state. IfExÞ ln n,
the energy is not absorbed by the quantum system. Since
number of bosons excited from the ground state, for a gi
Ex , is unique for this system,the number fluctuation in the
ground state is identically zero. Moreover, this conclusion is
valid whether we take in Eq.~1! an upper cutoff in the prime
©2003 The American Physical Society05-1
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number, or the infinite sequence of all the primes. T
information-theoretic entropy at an excitation energyEx is

S~Ex!52(
i

Pi ln Pi , ~3!

wherePi is the probability of excitation of the microstatei.
Since only one microstate contributes with unit probabili
and all others havePi50 ~when Ex5 ln n), the entropyS
50. It is also straightforward to calculate the ground st
populationN0 as a function of the excitation energyEx . For
this purpose, we truncate the spectrum given by Eq.~1! to
the first 106 primes, with a cutoff denoted byp!, and take
N5100. We shall display the numerical results after desc
ing the canonical calculations.

Our next task is to calculate these quantities in the can
cal ensemble, and see if the differences in the microcanon
and canonical results may be accounted for~asN→`) using
the method of Navezet al. @7#. We first do the calculation for
the truncated spectrum. The one-body canonical parti
function is then given byZ1(b)511(p52

p!
exp(2b ln p).

The N-body bosonic canonical partition function is obtain
by using the recursion relation@24#

ZN~b!5
1

N (
s51

N

Z1~sb!ZN2s~b!. ~4!

Once ZN is found, the ground state occupationN05^n0&N
and the ground state number fluctuation for the canon
ensemble can be readily computed@18,25#. We define
^d2N0&5(^n0

2&N2^n0&N
2 ), where the right-hand side~RHS!

is calculated using Eqs.~24! and ~25! of Ref. @18#. In Figs.
1~a! and 1~b!, we display the results of the canonical calc
lations for the ground state occupancy fractionN0 /N and the
ground state fluctuation̂d2N0&

1/2/N for N5100 as a func-
tion of temperatureT with the truncated spectrum of the fir
106 primes. For comparison, we also show the results of
corresponding grand canonical calculation. The grand
nonical catastrophe for the number fluctuation is clearly e
dent. It is also easy to calculate the canonical~equilibrium!
entropyS5 ln ZN(b)1b^Ex&, where the average excitation e
ergy is given by ^Ex&52] ln ZN(b)/]b. The comparison
with the combinatorial~or microcanonical! results requires
that we identify the excitation energyEx with the canonical
averagê Ex&. This is only true if^Ex& is sharply peaked a
the equilibrium temperature, as a consequence of the com
tition between the increasing number of accessible st
with temperature, and the decrease in the corresponding
cupancy due to the Boltzmann weighting. In the particu
example under study, the canonical concept of averag
breaks down. This is apparent in Fig. 2, where the canon
fractional occupancy of the bosons in the excited sta
^Ne&/N, for N5100, is compared with the~exact! combina-
torial ~or microcanonical! calculation as a function of the
excitation energyEx . Although the canonical and the gran
canonical̂ Ne&/N are nearly identical, the corresponding m
crocanonical quantity is radically different. This anoma
persists even asN→`, showing the breakdown of th
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equivalence between the microcanonical and the other
sembles. In Fig. 3, we display the behavior of the canon
entropy as a function ofT and ^Ex&. The microcanonical
entropyS(Ex), of course, is zero, and so is the number flu
tuation^d2N0&. Thus, we find that the canonical results ha
no resemblance with the exact microcanonical ones.
these calculations were performed for a truncated spect
~first 106 primes! of ln p, as specified earlier, and forN
5100.

It was pointed out by Navezet al. @7# that for a trapped
Bose gas below the critical temperature, the microcanon
result for fluctuation could be obtained solely using the
nonically calculated quantities, which in turn may be o
tained from the so called Maxwell-Demon ensemble@21#.
We now use this procedure to check if the microcanoni
results may be obtained from a canonical calculation asN
→`. These authors constructed the Maxwell-Demon
semble in which the ground state~for T,Tc) was taken to be
the reservoir of bosons that could exchange particles with
rest of the subsystem~of the excited spectrum! without ex-
changing energy. Denoting the grand canonical partit

FIG. 1. ~a! Average occupancy in the ground state,N0 /N, ver-
sus temperatureT for N5100 in the canonical and grand canonic
ensembles.~b! Plot of the relative ground state number fluctuati
in both ensembles. Note the steep rise in the grand canonical
tuation.
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function of the excited subsystem byJe(a,b), with a
5bm, it was shown that the canonical occupancy of t
excited states,̂ Ne&, and the number fluctuation̂d2Ne&
could be obtained from the first and the second derivative
Je with respect toa, and then puttinga50. It was further
noted that the microcanonical number fluctuation for the
cited particles was related to the canonical quantities by
relation

^d2Ne&MC
` 5^d2Ne&CN

` 2
@^dNedE&CN

` #2

^d2E&CN
` , ~5!

where the superscript̀ denotesN→`. This worked effi-
ciently for harmonic traps in various dimensions. These c
culations, for our system, are also easily done forb.1. We
now consider spectrum~1! to be the infinite sequence of th
primes, and evaluate the RHS of Eq.~6!. We readily obtain
the convergent expression~for b.1)

^d2Ne&MC
` 5(

p

pb

~pb21!2 2

F(
p

~ ln p!pb

~pb21!2G2

(
p

~ ln p!2pb

~pb21!2

. ~6!

FIG. 2. Plot of the average occupancy in the excited sta
Ne /N, for N5100, versus the excitation energyEx in the canonical
ensemble~continuous bold curve!, compared with the exact micro
canonical calculation. As emphasized in the text, for the canon
calculation, the ensemble averaged^Ex& is identified with the exci-
tation energyEx . The microcanonical calculation is done forEx

5 lnn, where n is an integer, and the results are shown by d
points. These are joined by dotted lines to emphasize their zig
character. For example, the sixth point~including 0) corresponds to
Ex5 ln6, and givesNe52, corresponding to the prime factor de
composition 233.
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The RHS of Eq.~6! is nonzero, and therefore does not agr
with the microcanonical result. The failure of the above fo
malism of Navezet al. @7# is not a shortcoming of their
method, but is due to the failure of the canonical ensem
averaging itself when applied to the single-particle spectr
~1!. This is further elaborated below.

Consider constructing theN-particle canonical partition
function ZN(b) from spectrum~1!, as we have done. AsN
→`, a little thought will show thatZN→z(b), where
z(b)5(n1/nb is the Riemann zeta function. This is becau
we are allowed to span over allE in calculating ZN(b).
Similarly, the grand partition functionJe(a,b) with a50 is
none other than the Euler product representation of the R
mann zeta function@23#. This has a density of states growin
exponentially withE, and has been studied in connectio
with the limiting hadronic temperature@26#. In contrast, the
number of accessible states for an excitation energyE in the
microcanonical setup does not increase at all. Since the
ergy remains locked in one microstate, the system canno
described through the usual concepts of statistical mech
ics. Although the thought experiment investigated in this p
per is too idealized to be realizable in the real world, it do
serve as a warning that the canonical~grand canonical! en-
semble averaging may yield nonsensical results if there is
a large number of microstates corresponding to a macros
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FIG. 3. Plot of the canonical entropy as a function of tempe
ture T on the left, and excitation energŷEx& on the right, forN
5100. The microcanonical entropy is zero.
.
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